The previous place where OR_KW was inserted into the grammar to allow
expressions like "map or [...]" led to a number of weird outcomes. By
moving it to expr_simple, expressions using "or" as a variable are now
parsed consistently with the rest of the language. Conflicts are
prevented by telling Bison that OR_KW has higher precedence than '.'.
For example, instead of doing
#include "nix/store-config.hh"
#include "nix/derived-path.hh"
Now do
#include "nix/store/config.hh"
#include "nix/store/derived-path.hh"
This was originally planned in the issue, and also recent requested by
Eelco.
Most of the change is purely mechanical. There is just one small
additional issue. See how, in the example above, we took this
opportunity to also turn `<comp>-config.hh` into `<comp>/config.hh`.
Well, there was already a `nix/util/config.{cc,hh}`. Even though there
is not a public configuration header for libutil (which also would be
called `nix/util/config.{cc,hh}`) that's still confusing, To avoid any
such confusion, we renamed that to `nix/util/configuration.{cc,hh}`.
Finally, note that the libflake headers already did this, so we didn't
need to do anything to them. We wouldn't want to mistakenly get
`nix/flake/flake/flake.hh`!
Progress on #7876
The short answer for why we need to do this is so we can consistently do
`#include "nix/..."`. Without this change, there are ways to still make
that work, but they are hacky, and they have downsides such as making it
harder to make sure headers from the wrong Nix library (e..g.
`libnixexpr` headers in `libnixutil`) aren't being used.
The C API alraedy used `nix_api_*`, so its headers are *not* put in
subdirectories accordingly.
Progress on #7876
We resisted doing this for a while because it would be annoying to not
have the header source file pairs close by / easy to change file
path/name from one to the other. But I am ameliorating that with
symlinks in the next commit.
All of this code doesn't actually depend on anything from
libexpr. Because Pos is so tigtly coupled with Error, it
makes sense to have in the same library.
It's not very clear what the ownership model is here, but one thing
is certain: `.up` can't be destroyed before the StaticEnv that refers
to it is.
Changing a non-owning pointer to taking shared ownership of the parent
`StaticEnv` prevents the `.up` from being freed.
I'm not a huge fan of the inverted ownership, where child `StaticEnv`
takes a refcount of the parent, but this seems like the least intrusive
way to fix the use-after-free.
This shouldn't cause any shared_ptr cycles to appear (hopefully).
As a prelude to making "or" work like a normal variable, emit a warning
any time the "fn or" production is used in a context that will change
how it is parsed when that production is refactored.
In detail: in the future, OR_KW will be moved to expr_simple, and the
cursed ExprCall production that is currently part of the expr_select
nonterminal will be generated "normally" in expr_app instead. Any
productions that accept an expr_select will be affected, except for the
expr_app nonterminal itself (because, while expr_app has a production
accepting a bare expr_select, its other production will continue to
accept "fn or" expressions). So all we need to do is emit an appropriate
warning when an expr_simple representing a cursed ExprCall is accepted
in one of those productions without first going through expr_app.
As the warning message describes, users can suppress the warning by
wrapping their problematic "fn or" expressions in parentheses. For
example, "f g or" can be made future-proof by rewriting it as
"f (g or)"; similarly "[ x y or ]" can be rewritten as "[ x (y or) ]",
etc. The parentheses preserve the current grouping behavior, as in the
future "f g or" will be parsed as "(f g) or", just like
"f g anything-else" is grouped. (Mechanically, this suppresses the
warning because the problem ExprCalls go through the
"expr_app : expr_select" production, which resets the cursed status on
the ExprCall.)
In _very_ rare cases (I had about 7 cases out of 32200 files!),
the order of how inherit-from bindings are printed when using
`nix-instantiate --parse` gets messed up.
The cause of this seems to be because the std::map the bindings are
placed in is keyed on a _pointer_, which then uses an
[implementation-defined strict total order](https://en.cppreference.com/w/cpp/language/operator_comparison#Pointer_total_order).
The fix here is to key the bindings on their displacement instead,
which maintains the same order as they appear in the file.
Unfortunately I wasn't able to make a reproducible test for this in the
source, there's something about the local environment that makes it
unreproducible for me.
However I was able to make a reproducible test in a Nix build on a Nix
version from a very recent master:
nix build github:infinisil/non-det-nix-parsing-repro
Co-authored-by: Robert Hensing <roberth@users.noreply.github.com>
This makes it possible to certain discern failures from empty
snippets, which I think is an ok review comment.
Maybe it should do so for swapped column indexes too, but I'm not
sure.
I don't think it matters in the grand scheme. We don't even have
a real use case for `nullopt` now anyway.
Since we don't have a use case, I'm not applying this logic to
higher level functions yet.
... at call sites that are may be in the hot path.
I do not know how clever the compiler gets at these sites.
My primary concern is to not regress performance and I am confident
that this achieves it the easy way.
Thunks are now overwritten by a helper function
`Value::finishValue(newType, payload)` (where `payload` is the
original anonymous union inside `Value`). This helps to ensure we
never update a value elsewhere, since that would be incompatible with
parallel evaluation (i.e. after a value has transitioned from being a
thunk to being a non-thunk, it should be immutable).
There were two places where this happened: `Value::mkString()` and
`ExprAttrs::eval()`.
This PR also adds a bunch of accessor functions for value contents,
like `Value::integer()` to access the integer field in the union.
we now keep not a table of all positions, but a table of all origins and
their sizes. position indices are now direct pointers into the virtual
concatenation of all parsed contents. this slightly reduces memory usage
and time spent in the parser, at the cost of not being able to report
positions if the total input size exceeds 4GiB. this limit is not unique
to nix though, rustc and clang also limit their input to 4GiB (although
at least clang refuses to process inputs that are larger, we will not).
this new 4GiB limit probably will not cause any problems for quite a
while, all of nixpkgs together is less than 100MiB in size and already
needs over 700MiB of memory and multiple seconds just to parse. 4GiB
worth of input will easily take multiple minutes and over 30GiB of
memory without even evaluating anything. if problems *do* arise we can
probably recover the old table-based system by adding some tracking to
Pos::Origin (or increasing the size of PosIdx outright), but for time
being this looks like more complexity than it's worth.
since we now need to read the entire input again to determine the
line/column of a position we'll make unsafeGetAttrPos slightly lazy:
mostly the set it returns is only used to determine the file of origin
of an attribute, not its exact location. the thunks do not add
measurable runtime overhead.
notably this change is necessary to allow changing the parser since
apparently nothing supports nix's very idiosyncratic line ending choice
of "anything goes", making it very hard to calculate line/column
positions in the parser (while byte offsets are very easy).
we already normalize attr order to lexicographic, doing the same for
formals makes sense. doubly so because the order of formals would
otherwise depend on the context of the expression, which is not quite as
useful as one might expect.
desugaring inherit-from to syntactic duplication of the source expr also
duplicates side effects of the source expr (such as trace calls) and
expensive computations (such as derivationStrict).
for plain inherits this is really just a stylistic choice, but for
inherit-from it actually fixes an exponential size increase problem
during expr printing (as may happen during assertion failure reporting,
on during duplicate attr detection in the parser)
this also has the effect of sorting let bindings lexicographically
rather than by symbol creation order as was previously done, giving a
better canonicalization in the process.
While preparing PRs like #9753, I've had to change error messages in
dozens of code paths. It would be nice if instead of
EvalError("expected 'boolean' but found '%1%'", showType(v))
we could write
TypeError(v, "boolean")
or similar. Then, changing the error message could be a mechanical
refactor with the compiler pointing out places the constructor needs to
be changed, rather than the error-prone process of grepping through the
codebase. Structured errors would also help prevent the "same" error
from having multiple slightly different messages, and could be a first
step towards error codes / an error index.
This PR reworks the exception infrastructure in `libexpr` to
support exception types with different constructor signatures than
`BaseError`. Actually refactoring the exceptions to use structured data
will come in a future PR (this one is big enough already, as it has to
touch every exception in `libexpr`).
The core design is in `eval-error.hh`. Generally, errors like this:
state.error("'%s' is not a string", getAttrPathStr())
.debugThrow<TypeError>()
are transformed like this:
state.error<TypeError>("'%s' is not a string", getAttrPathStr())
.debugThrow()
The type annotation has moved from `ErrorBuilder::debugThrow` to
`EvalState::error`.
most EvalState and Expr members defined here could be elsewhere, where
they'd be easier to maintain (not being embedded in a file with arcane
syntax) and *somewhat* more faithfully placed according to the path of
the file they're defined in.
Also move `SourcePath` into `libutil`.
These changes allow `error.hh` and `error.cc` to access source path and
position information, which we can use to produce better error messages
(for example, we could consider omitting filenames when two or more
consecutive stack frames originate from the same file).
since `up` and `values` are both pointer-aligned the type field will
also be pointer-aligned, wasting 48 bits of space on most machines. we
can get away with removing the type field altogether by encoding some
information into the `with` expr that created the env to begin with,
reducing the GC load for the absolutely massive amount of single-entry
envs we create for lambdas. this reduces memory usage of system eval by
quite a bit (reducing heap size of our system eval from 8.4GB to 8.23GB)
and gives similar savings in eval time.
running `nix eval --raw --impure --expr 'with import <nixpkgs/nixos> {}; system'`
before:
Time (mean ± σ): 5.576 s ± 0.003 s [User: 5.197 s, System: 0.378 s]
Range (min … max): 5.572 s … 5.581 s 10 runs
after:
Time (mean ± σ): 5.408 s ± 0.002 s [User: 5.019 s, System: 0.388 s]
Range (min … max): 5.405 s … 5.411 s 10 runs
this also reduces forceValue code size and removes the need for
hideInDiagnostics. coopting thunk forcing like this has the additional
benefit of clarifying how these errors can happen in the first place.
This makes the position object used in exceptions abstract, with a
method getSource() to get the source code of the file in which the
error originated. This is needed for lazy trees because source files
don't necessarily exist in the filesystem, and we don't want to make
libutil depend on the InputAccessor type in libfetcher.