mirror of
https://github.com/NixOS/nix
synced 2025-06-27 16:51:15 +02:00
docs: split types from syntax (#11013)
move together all syntactic and semantic information into one page, and add a page on data types, which in turn links to the syntax and semantics. also split out the note on scoping rules into its own page. Co-authored-by: Ryan Hendrickson <ryan.hendrickson@alum.mit.edu>
This commit is contained in:
parent
f809edba4f
commit
a713476790
20 changed files with 1029 additions and 935 deletions
|
@ -1,486 +0,0 @@
|
|||
# Language Constructs
|
||||
|
||||
## Recursive sets
|
||||
|
||||
Recursive sets are like normal [attribute sets](./values.md#attribute-set), but the attributes can refer to each other.
|
||||
|
||||
> *rec-attrset* = `rec {` [ *name* `=` *expr* `;` `]`... `}`
|
||||
|
||||
Example:
|
||||
|
||||
```nix
|
||||
rec {
|
||||
x = y;
|
||||
y = 123;
|
||||
}.x
|
||||
```
|
||||
|
||||
This evaluates to `123`.
|
||||
|
||||
Note that without `rec` the binding `x = y;` would
|
||||
refer to the variable `y` in the surrounding scope, if one exists, and
|
||||
would be invalid if no such variable exists. That is, in a normal
|
||||
(non-recursive) set, attributes are not added to the lexical scope; in a
|
||||
recursive set, they are.
|
||||
|
||||
Recursive sets of course introduce the danger of infinite recursion. For
|
||||
example, the expression
|
||||
|
||||
```nix
|
||||
rec {
|
||||
x = y;
|
||||
y = x;
|
||||
}.x
|
||||
```
|
||||
|
||||
will crash with an `infinite recursion encountered` error message.
|
||||
|
||||
## Let-expressions
|
||||
|
||||
A let-expression allows you to define local variables for an expression.
|
||||
|
||||
> *let-in* = `let` [ *identifier* = *expr* ]... `in` *expr*
|
||||
|
||||
Example:
|
||||
|
||||
```nix
|
||||
let
|
||||
x = "foo";
|
||||
y = "bar";
|
||||
in x + y
|
||||
```
|
||||
|
||||
This evaluates to `"foobar"`.
|
||||
|
||||
## Inheriting attributes
|
||||
|
||||
When defining an [attribute set](./values.md#attribute-set) or in a [let-expression](#let-expressions) it is often convenient to copy variables from the surrounding lexical scope (e.g., when you want to propagate attributes).
|
||||
This can be shortened using the `inherit` keyword.
|
||||
|
||||
Example:
|
||||
|
||||
```nix
|
||||
let x = 123; in
|
||||
{
|
||||
inherit x;
|
||||
y = 456;
|
||||
}
|
||||
```
|
||||
|
||||
is equivalent to
|
||||
|
||||
```nix
|
||||
let x = 123; in
|
||||
{
|
||||
x = x;
|
||||
y = 456;
|
||||
}
|
||||
```
|
||||
|
||||
and both evaluate to `{ x = 123; y = 456; }`.
|
||||
|
||||
> **Note**
|
||||
>
|
||||
> This works because `x` is added to the lexical scope by the `let` construct.
|
||||
|
||||
It is also possible to inherit attributes from another attribute set.
|
||||
|
||||
Example:
|
||||
|
||||
In this fragment from `all-packages.nix`,
|
||||
|
||||
```nix
|
||||
graphviz = (import ../tools/graphics/graphviz) {
|
||||
inherit fetchurl stdenv libpng libjpeg expat x11 yacc;
|
||||
inherit (xorg) libXaw;
|
||||
};
|
||||
|
||||
xorg = {
|
||||
libX11 = ...;
|
||||
libXaw = ...;
|
||||
...
|
||||
}
|
||||
|
||||
libpng = ...;
|
||||
libjpg = ...;
|
||||
...
|
||||
```
|
||||
|
||||
the set used in the function call to the function defined in
|
||||
`../tools/graphics/graphviz` inherits a number of variables from the
|
||||
surrounding scope (`fetchurl` ... `yacc`), but also inherits `libXaw`
|
||||
(the X Athena Widgets) from the `xorg` set.
|
||||
|
||||
Summarizing the fragment
|
||||
|
||||
```nix
|
||||
...
|
||||
inherit x y z;
|
||||
inherit (src-set) a b c;
|
||||
...
|
||||
```
|
||||
|
||||
is equivalent to
|
||||
|
||||
```nix
|
||||
...
|
||||
x = x; y = y; z = z;
|
||||
a = src-set.a; b = src-set.b; c = src-set.c;
|
||||
...
|
||||
```
|
||||
|
||||
when used while defining local variables in a let-expression or while
|
||||
defining a set.
|
||||
|
||||
In a `let` expression, `inherit` can be used to selectively bring specific attributes of a set into scope. For example
|
||||
|
||||
|
||||
```nix
|
||||
let
|
||||
x = { a = 1; b = 2; };
|
||||
inherit (builtins) attrNames;
|
||||
in
|
||||
{
|
||||
names = attrNames x;
|
||||
}
|
||||
```
|
||||
|
||||
is equivalent to
|
||||
|
||||
```nix
|
||||
let
|
||||
x = { a = 1; b = 2; };
|
||||
in
|
||||
{
|
||||
names = builtins.attrNames x;
|
||||
}
|
||||
```
|
||||
|
||||
both evaluate to `{ names = [ "a" "b" ]; }`.
|
||||
|
||||
## Functions
|
||||
|
||||
Functions have the following form:
|
||||
|
||||
```nix
|
||||
pattern: body
|
||||
```
|
||||
|
||||
The pattern specifies what the argument of the function must look like,
|
||||
and binds variables in the body to (parts of) the argument. There are
|
||||
three kinds of patterns:
|
||||
|
||||
- If a pattern is a single identifier, then the function matches any
|
||||
argument. Example:
|
||||
|
||||
```nix
|
||||
let negate = x: !x;
|
||||
concat = x: y: x + y;
|
||||
in if negate true then concat "foo" "bar" else ""
|
||||
```
|
||||
|
||||
Note that `concat` is a function that takes one argument and returns
|
||||
a function that takes another argument. This allows partial
|
||||
parameterisation (i.e., only filling some of the arguments of a
|
||||
function); e.g.,
|
||||
|
||||
```nix
|
||||
map (concat "foo") [ "bar" "bla" "abc" ]
|
||||
```
|
||||
|
||||
evaluates to `[ "foobar" "foobla" "fooabc" ]`.
|
||||
|
||||
- A *set pattern* of the form `{ name1, name2, …, nameN }` matches a
|
||||
set containing the listed attributes, and binds the values of those
|
||||
attributes to variables in the function body. For example, the
|
||||
function
|
||||
|
||||
```nix
|
||||
{ x, y, z }: z + y + x
|
||||
```
|
||||
|
||||
can only be called with a set containing exactly the attributes `x`,
|
||||
`y` and `z`. No other attributes are allowed. If you want to allow
|
||||
additional arguments, you can use an ellipsis (`...`):
|
||||
|
||||
```nix
|
||||
{ x, y, z, ... }: z + y + x
|
||||
```
|
||||
|
||||
This works on any set that contains at least the three named
|
||||
attributes.
|
||||
|
||||
It is possible to provide *default values* for attributes, in
|
||||
which case they are allowed to be missing. A default value is
|
||||
specified by writing `name ? e`, where *e* is an arbitrary
|
||||
expression. For example,
|
||||
|
||||
```nix
|
||||
{ x, y ? "foo", z ? "bar" }: z + y + x
|
||||
```
|
||||
|
||||
specifies a function that only requires an attribute named `x`, but
|
||||
optionally accepts `y` and `z`.
|
||||
|
||||
- An `@`-pattern provides a means of referring to the whole value
|
||||
being matched:
|
||||
|
||||
```nix
|
||||
args@{ x, y, z, ... }: z + y + x + args.a
|
||||
```
|
||||
|
||||
but can also be written as:
|
||||
|
||||
```nix
|
||||
{ x, y, z, ... } @ args: z + y + x + args.a
|
||||
```
|
||||
|
||||
Here `args` is bound to the argument *as passed*, which is further
|
||||
matched against the pattern `{ x, y, z, ... }`.
|
||||
The `@`-pattern makes mainly sense with an ellipsis(`...`) as
|
||||
you can access attribute names as `a`, using `args.a`, which was
|
||||
given as an additional attribute to the function.
|
||||
|
||||
> **Warning**
|
||||
>
|
||||
> `args@` binds the name `args` to the attribute set that is passed to the function.
|
||||
> In particular, `args` does *not* include any default values specified with `?` in the function's set pattern.
|
||||
>
|
||||
> For instance
|
||||
>
|
||||
> ```nix
|
||||
> let
|
||||
> f = args@{ a ? 23, ... }: [ a args ];
|
||||
> in
|
||||
> f {}
|
||||
> ```
|
||||
>
|
||||
> is equivalent to
|
||||
>
|
||||
> ```nix
|
||||
> let
|
||||
> f = args @ { ... }: [ (args.a or 23) args ];
|
||||
> in
|
||||
> f {}
|
||||
> ```
|
||||
>
|
||||
> and both expressions will evaluate to:
|
||||
>
|
||||
> ```nix
|
||||
> [ 23 {} ]
|
||||
> ```
|
||||
|
||||
Note that functions do not have names. If you want to give them a name,
|
||||
you can bind them to an attribute, e.g.,
|
||||
|
||||
```nix
|
||||
let concat = { x, y }: x + y;
|
||||
in concat { x = "foo"; y = "bar"; }
|
||||
```
|
||||
|
||||
## Conditionals
|
||||
|
||||
Conditionals look like this:
|
||||
|
||||
```nix
|
||||
if e1 then e2 else e3
|
||||
```
|
||||
|
||||
where *e1* is an expression that should evaluate to a Boolean value
|
||||
(`true` or `false`).
|
||||
|
||||
## Assertions
|
||||
|
||||
Assertions are generally used to check that certain requirements on or
|
||||
between features and dependencies hold. They look like this:
|
||||
|
||||
```nix
|
||||
assert e1; e2
|
||||
```
|
||||
|
||||
where *e1* is an expression that should evaluate to a Boolean value. If
|
||||
it evaluates to `true`, *e2* is returned; otherwise expression
|
||||
evaluation is aborted and a backtrace is printed.
|
||||
|
||||
Here is a Nix expression for the Subversion package that shows how
|
||||
assertions can be used:.
|
||||
|
||||
```nix
|
||||
{ localServer ? false
|
||||
, httpServer ? false
|
||||
, sslSupport ? false
|
||||
, pythonBindings ? false
|
||||
, javaSwigBindings ? false
|
||||
, javahlBindings ? false
|
||||
, stdenv, fetchurl
|
||||
, openssl ? null, httpd ? null, db4 ? null, expat, swig ? null, j2sdk ? null
|
||||
}:
|
||||
|
||||
assert localServer -> db4 != null; ①
|
||||
assert httpServer -> httpd != null && httpd.expat == expat; ②
|
||||
assert sslSupport -> openssl != null && (httpServer -> httpd.openssl == openssl); ③
|
||||
assert pythonBindings -> swig != null && swig.pythonSupport;
|
||||
assert javaSwigBindings -> swig != null && swig.javaSupport;
|
||||
assert javahlBindings -> j2sdk != null;
|
||||
|
||||
stdenv.mkDerivation {
|
||||
name = "subversion-1.1.1";
|
||||
...
|
||||
openssl = if sslSupport then openssl else null; ④
|
||||
...
|
||||
}
|
||||
```
|
||||
|
||||
The points of interest are:
|
||||
|
||||
1. This assertion states that if Subversion is to have support for
|
||||
local repositories, then Berkeley DB is needed. So if the Subversion
|
||||
function is called with the `localServer` argument set to `true` but
|
||||
the `db4` argument set to `null`, then the evaluation fails.
|
||||
|
||||
Note that `->` is the [logical
|
||||
implication](https://en.wikipedia.org/wiki/Truth_table#Logical_implication)
|
||||
Boolean operation.
|
||||
|
||||
2. This is a more subtle condition: if Subversion is built with Apache
|
||||
(`httpServer`) support, then the Expat library (an XML library) used
|
||||
by Subversion should be same as the one used by Apache. This is
|
||||
because in this configuration Subversion code ends up being linked
|
||||
with Apache code, and if the Expat libraries do not match, a build-
|
||||
or runtime link error or incompatibility might occur.
|
||||
|
||||
3. This assertion says that in order for Subversion to have SSL support
|
||||
(so that it can access `https` URLs), an OpenSSL library must be
|
||||
passed. Additionally, it says that *if* Apache support is enabled,
|
||||
then Apache's OpenSSL should match Subversion's. (Note that if
|
||||
Apache support is not enabled, we don't care about Apache's
|
||||
OpenSSL.)
|
||||
|
||||
4. The conditional here is not really related to assertions, but is
|
||||
worth pointing out: it ensures that if SSL support is disabled, then
|
||||
the Subversion derivation is not dependent on OpenSSL, even if a
|
||||
non-`null` value was passed. This prevents an unnecessary rebuild of
|
||||
Subversion if OpenSSL changes.
|
||||
|
||||
## With-expressions
|
||||
|
||||
A *with-expression*,
|
||||
|
||||
```nix
|
||||
with e1; e2
|
||||
```
|
||||
|
||||
introduces the set *e1* into the lexical scope of the expression *e2*.
|
||||
For instance,
|
||||
|
||||
```nix
|
||||
let as = { x = "foo"; y = "bar"; };
|
||||
in with as; x + y
|
||||
```
|
||||
|
||||
evaluates to `"foobar"` since the `with` adds the `x` and `y` attributes
|
||||
of `as` to the lexical scope in the expression `x + y`. The most common
|
||||
use of `with` is in conjunction with the `import` function. E.g.,
|
||||
|
||||
```nix
|
||||
with (import ./definitions.nix); ...
|
||||
```
|
||||
|
||||
makes all attributes defined in the file `definitions.nix` available as
|
||||
if they were defined locally in a `let`-expression.
|
||||
|
||||
The bindings introduced by `with` do not shadow bindings introduced by
|
||||
other means, e.g.
|
||||
|
||||
```nix
|
||||
let a = 3; in with { a = 1; }; let a = 4; in with { a = 2; }; ...
|
||||
```
|
||||
|
||||
establishes the same scope as
|
||||
|
||||
```nix
|
||||
let a = 1; in let a = 2; in let a = 3; in let a = 4; in ...
|
||||
```
|
||||
|
||||
Variables coming from outer `with` expressions *are* shadowed:
|
||||
|
||||
```nix
|
||||
with { a = "outer"; };
|
||||
with { a = "inner"; };
|
||||
a
|
||||
```
|
||||
|
||||
Does evaluate to `"inner"`.
|
||||
|
||||
## Comments
|
||||
|
||||
- Inline comments start with `#` and run until the end of the line.
|
||||
|
||||
> **Example**
|
||||
>
|
||||
> ```nix
|
||||
> # A number
|
||||
> 2 # Equals 1 + 1
|
||||
> ```
|
||||
>
|
||||
> ```console
|
||||
> 2
|
||||
> ```
|
||||
|
||||
- Block comments start with `/*` and run until the next occurrence of `*/`.
|
||||
|
||||
> **Example**
|
||||
>
|
||||
> ```nix
|
||||
> /*
|
||||
> Block comments
|
||||
> can span multiple lines.
|
||||
> */ "hello"
|
||||
> ```
|
||||
>
|
||||
> ```console
|
||||
> "hello"
|
||||
> ```
|
||||
|
||||
This means that block comments cannot be nested.
|
||||
|
||||
> **Example**
|
||||
>
|
||||
> ```nix
|
||||
> /* /* nope */ */ 1
|
||||
> ```
|
||||
>
|
||||
> ```console
|
||||
> error: syntax error, unexpected '*'
|
||||
>
|
||||
> at «string»:1:15:
|
||||
>
|
||||
> 1| /* /* nope */ *
|
||||
> | ^
|
||||
> ```
|
||||
|
||||
Consider escaping nested comments and unescaping them in post-processing.
|
||||
|
||||
> **Example**
|
||||
>
|
||||
> ```nix
|
||||
> /* /* nested *\/ */ 1
|
||||
> ```
|
||||
>
|
||||
> ```console
|
||||
> 1
|
||||
> ```
|
||||
|
||||
## Scoping rules
|
||||
|
||||
Nix is [statically scoped](https://en.wikipedia.org/wiki/Scope_(computer_science)#Lexical_scope), but with multiple scopes and shadowing rules.
|
||||
|
||||
* primary scope --- explicitly-bound variables
|
||||
* [`let`](#let-expressions)
|
||||
* [`inherit`](#inheriting-attributes)
|
||||
* function arguments
|
||||
|
||||
* secondary scope --- implicitly-bound variables
|
||||
* [`with`](#with-expressions)
|
||||
Primary scope takes precedence over secondary scope.
|
||||
See [`with`](#with-expressions) for a detailed example.
|
Loading…
Add table
Add a link
Reference in a new issue