1
0
Fork 0
mirror of https://github.com/NixOS/nix synced 2025-06-28 22:01:15 +02:00

* Started removing closure store expressions, i.e., the explicit

representation of closures as ATerms in the Nix store.  Instead, the
  file system pointer graph is now stored in the Nix database.  This
  has many advantages:

  - It greatly simplifies the implementation (we can drop the notion
    of `successors', and so on).

  - It makes registering roots for the garbage collector much easier.
    Instead of specifying the closure expression as a root, you can
    simply specify the store path that must be retained as a root.
    This could not be done previously, since there was no way to find
    the closure store expression containing a given store path.
    
  - Better traceability: it is now possible to query what paths are
    referenced by a path, and what paths refer to a path.
This commit is contained in:
Eelco Dolstra 2005-01-19 11:16:11 +00:00
parent e9762e2d10
commit 863dcff6c5
15 changed files with 407 additions and 890 deletions

View file

@ -1,16 +1,32 @@
#include "normalise.hh"
StoreExpr storeExprFromPath(const Path & path)
Derivation derivationFromPath(const Path & drvPath)
{
assertStorePath(path);
ensurePath(path);
ATerm t = ATreadFromNamedFile(path.c_str());
if (!t) throw Error(format("cannot read aterm from `%1%'") % path);
return parseStoreExpr(t);
assertStorePath(drvPath);
ensurePath(drvPath);
ATerm t = ATreadFromNamedFile(drvPath.c_str());
if (!t) throw Error(format("cannot read aterm from `%1%'") % drvPath);
return parseDerivation(t);
}
void computeFSClosure(const Path & storePath,
PathSet & paths)
{
if (paths.find(storePath) != paths.end()) return;
paths.insert(storePath);
PathSet references;
queryReferences(storePath, references);
for (PathSet::iterator i = references.begin();
i != references.end(); ++i)
computeFSClosure(*i, paths);
}
#if 0
PathSet storeExprRoots(const Path & nePath)
{
PathSet paths;
@ -71,3 +87,4 @@ PathSet storeExprRequisites(const Path & nePath,
paths, doneSet);
return paths;
}
#endif